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Innovation in the culture and derivation of pluripotent human
stem cells
Todd C McDevitt1,2 and Sean P Palecek3,4
In recent years, substantial progress has been made in

identifying culture conditions and specific molecular factors

that maintain human embryonic stem cells (hESCs) in a

self-renewing, pluripotent state. As science and medicine

move closer to producing viable hESC-based therapeutics,

effective methods of isolating and maintaining undifferentiated

hESCs using clinically acceptable good manufacturing

practices must be developed. In recent years, progress toward

this goal has included the identification of molecular factors

that induce or repress hESC self-renewal and the development

of defined media that support long-term hESC expansion. In

addition, the recent discovery of novel means to derive

pluripotent cells that avoid embryo destruction, including

induced pluripotent stem (iPS cells), may mitigate ethical

concerns associated with the use of hESCs.
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Introduction
Human embryonic stem cells (hESCs), first derived from

the blastocyst inner cell mass in 1998 [1], have become an

attractive cell type for regenerative therapies, in vitro
diagnostic technologies, and developmental models.

Because of their infinite self-renewal capability and plur-

ipotent nature, hESCs have the potential to generate

large quantities of all somatic cell types, including term-

inally differentiated cells and their progenitors. However,

one key to translating hESCs into viable applications is
www.sciencedirect.com
establishing defined, reproducible methods to derive and

maintain the cells in vitro without compromising their

differentiation potential or exposing them to potentially

pathogenic agents that could subsequently transmit dis-

eases upon clinical use. Until the past couple of years,

hESCs were only maintained in undefined conditions,

leading to heterogeneity in cells and culture conditions,

and diminishing the utility of these cells in clinical

applications. This review will describe how recent

insights into the molecular mechanisms of hESC self-

renewal have enabled the development of defined con-

ditions for culturing and deriving hESCs and other plur-

ipotent cells, and will identify challenges that remain in

hESC culture system development.

Advances in hESC culture conditions
Feeder cells

Originally, primary mouse embryonic fibroblasts (MEFs),

and later immortalized MEFs (STO line), were used for

the derivation and propagation of hESCs in an undiffer-

entiated state [1,2]. Because of concerns about hESC

contact with xenogeneic cells, a number of human cell

types have been subsequently examined as alternative

feeder cells for hESC culture. Fibroblasts from different

stages of development (fetal, neonatal, and adult) and

tissue sources (skin, muscle, placenta, and uterus) are

reportedly capable of supporting hESC undifferentiated

growth, though certain cells support hESC maintenance

better than others (for a review of feeder cells for hESC

culture see [3]). In addition to allogeneic cell sources,

fibroblast-like cells that spontaneously differentiate in

hESC cultures can also be isolated and propagated to

serve as an autogeneic source of feeder cells [4]. The

differences in the performance of various feeder cells to

support the pluripotency and self-renewal of hESCs can

be attributed to the production of different types and

amounts of secreted molecules. For example, MEFs

typically produce more activin A and less basic fibroblast

growth factor (bFGF) than human foreskin fibroblasts,

which produce variable amounts of bFGF among differ-

ent lines [5].

Culture media composition

Soon after the initial derivation of hESC lines, the first

feeder-free culture system was described. In lieu of

feeder layers, hESCs were grown for extended passages

on Matrigel-coated substrates in the presence of MEF-

conditioned medium [6]. Recent interrogation of the

complex compositions of media conditioned by fibro-

blasts has provided insight into specific factors capable
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of supporting hESC pluripotency in vitro and facilitated

the transition from feeder cells to defined media. By

performing comparative proteomic analysis on media

before and after conditioning by human fetal, human

neonatal, and mouse embryonic fibroblasts, 175 proteins

were uniquely identified, of which 34 were shared among

the three cell types [7]. Many of the proteins identified,

such as Activin/Inhibin, insulin-like growth factor-1

(IGF1), and BMP/TGF-b1, were independently ident-

ified to play an active role in pluripotent hESC growth.

Molecules secreted into the media by primary MEFs and

a MEF line incapable of supporting hESCs in an undif-

ferentiated state were also compared to identify pluripo-

tent maintenance factors. As a result, a mixture of six

recombinant proteins capable of supporting hESC growth

(pigment epithelium-derived factor, plasminogen activa-

tor inhibitor, insulin-like growth factor binding proteins 2

and 7, monocyte chemoattractant protein 1, and interleu-

kin 6) could be substituted for the more complex MEF-

conditioned media when culturing cells on fibronectin [8].

Based in part on analysis of conditioned media, a num-

ber of individual soluble factors, as well as combinations

of molecules, have been identified to be important

regulators of pluripotent stem cell self-renewal

(Figure 1). Traditionally, bFGF has been the primary

supplement added to hESC culture media according to

the original derivation and culture protocols for undif-

ferentiated cell growth. Several years ago, several inde-

pendent groups reported that bFGF was necessary and

sufficient for hESC growth under feeder-free con-

ditions, even without MEF-conditioned media [9–12].

By increasing the concentration of bFGF to 100 ng/ml

(�6 nM, nearly 25� the amount added to MEF CM),

hESCs could be sustained in a pluripotent state similar

to CM [13�]. The requirement of bFGF concentrations

substantially above the Kd (<1 nM) may be an effect of

the low thermal stability of bFGF in culture conditions
Figure 1

Molecules regulating pluripotent stem cell renewal. Growth factors such as bF

via direct and indirect mechanisms, whereas inhibitors of BMP signaling, su
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or alternatively may permit signaling through lower-

affinity interactions [13�].

In addition to bFGF, TGF-b/Activin/Nodal signaling via

the SMAD2/3 pathway has also been demonstrated to

play a significant, if not crucial role in regulating the

pluripotency of hESCs in the absence of feeder layers

[14–16]. The combination of Activin with bFGF can

sufficiently maintain hESC self-renewal even in the

absence of feeder cells, CM, and serum replacement

[17], and Activin A treatment induces expression of

numerous pluripotent genes, such as Oct4 and Nanog,

and stimulatory growth factors, such as Nodal, Wnt3,

bFGF, and FGF8 [18]. Inhibiting the bioactivity of

potent morphogens, such as bone morphogenic proteins,

by a specific antagonist, like Noggin, may also enhance

the maintenance of hESCs in a pluripotent state [12,19].

More recently, the analysis of specific growth factor re-

ceptor expression and signal transduction implicated the

IGF signaling pathway as a direct mediator of hESC

growth, whereas bFGF appeared to play an indirect role

[20�,21].

Although most hESC self-renewal studies have focused

on the effects of growth factor proteins, recent evidence

indicates that lipid molecules, abundant in serum and

knockout serum replacement, are also important factors

capable of maintaining hESC pluripotency. The addition

of sphingosine-1-phosphate (S1P), in combination with

platelet-derived growth factor (PDGF), to serum-free

media inhibited the spontaneous differentiation of

hESCs grown on MEFs [22]. Likewise, supplementation

of hESC culture media with sphingolipid metabolites,

such as S1P or ceramide, appear to benefit the mainten-

ance of hESC cultures by enhancing proliferation, as well

as preventing hESC apoptosis and perhaps selectively

promoting apoptosis of differentiating cells [23–25].

Because of their hydrophobic nature, the introduction
GF, IGF, and TGF-b/Activin/Nodal stimulate pluripotent stem cell growth

ch as noggin, prevent premature differentiation.
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of lipids to aqueous media requires a hydrophilic carrier

molecule, often albumin, in order to remain soluble. A

recent comparison of hESC cultures treated with either

lipid-rich or lipid-poor fractions of bovine serum albumin

(BSA) clearly demonstrated that only the lipid-rich BSA

stimulated self-renewal of karyotypically normal hESCs

in a pluripotent state [26].

Toward defined, humanized culture conditions

The use of hESCs in clinical trials and therapeutic

applications will require good manufacturing practices

(GMPs) during both derivation and subsequent culture,

including validation and documentation of manufacturing

and testing protocols (see [27] for a recent review of GMP

regulations as they pertain to hESC-based therapies).

Since hESC lines can incorporate animal components,

including the nonhuman sialic acid Neu5Gc, during

culture in the presence of animal feeder cells or

animal-derived serum components [28], deriving and

culturing hESC lines in defined, humanized conditions

would be ideal. However, lines that have been exposed to

animal components may lose Neu5Gc following culture

in humanized conditions [29,30], suggesting that con-

taminated lines may still be useful in clinical applications

if they are proven to be free of infectious or pathogenic

agents.

Allogeneic human fibroblasts, as well as hESC-derived

cells, offer xeno-free feeder options for the derivation of

hESC lines [3]. Recently, human feeder cells have been

used in conjunction with medium containing human

serum to derive xeno-free hESC lines [31,32]. Ludwig

et al. described the first defined, completely animal-com-

ponent free hESC derivation. Their medium contained a

combination of small molecules and proteins including

bFGF, TGF-b1, LiCl, GABA, and pipecolic acid and

hESCs were cultured on a matrix consisting of human

collagen IV, vitronectin, laminin, and fibronectin [33�].
Although these lines acquired chromosomal abnormal-

ities, including XXY and chromosome 12 trisomy, it

remains unclear to what extent the defined culture con-

ditions contributed to these abnormalities.

Advances in scaling hESC culture
Clinical trials or therapies using hESC-derived cells will

require the ability to culture large quantities of hESCs

under GMP conditions. For example, the treatment of

type 1 diabetes mellitus may require greater than 108 beta

cells per transplant, with multiple transplants required

per patient [34]. An improved understanding of the

factors regulating hESC self-renewal and differentiation

has led to the development of more defined conditions for

robust, scalable hESC culture.

Scaling hESC genetic manipulation, purification, and

enzymatic dissociation has been complicated by low rates

of clonal expansion. Inhibition of Rho-associated kinase
www.sciencedirect.com
(ROCK) can improve cloning efficiency from <1% to

approximately 27% [35��]. Likewise, neurotrophins and

pleiotrophin appear to improve clonal recovery by inhi-

biting apoptosis [36,37]. Culturing hESCs in hypoxic

conditions also improves clonal recovery [38].

Reliable methods to monitor and suppress abnormal

karyotype acquisition will be a crucial quality control

factor in scaling hESC cultivation. Chromosomal abnorm-

alities are commonly acquired after long-term passaging

[39,40], but little is known about the mechanisms by

which these abnormalities arise or ways to repress them.

Mechanical dissociation of cell colonies during passaging

has been suggested to decrease the rate of karyotypic

variations as compared to enzymatic dissociation [41], but

mechanical dissociation of individual colonies is unlikely

to be efficient for large-scale culture.

Development of scalable hESC culture systems remains

in its infancy. A recently developed robotic system for

plating, feeding, and harvesting hESCs in MEF coculture

exhibited similar growth and differentiation rates as

manual culture methods [42�]. Suspension culture expan-

sion of hESCs potentially offers a more robust, scalable

system than adherent plate-based expansion. However,

effective self-renewal of hESCs in suspension has not yet

been demonstrated. Suspension cultures of murine

embryonic stem cells (mESCs) attached to microcarriers

or in multicellular aggregates have established that cell

density and shear force can be manipulated to repress

aggregation and spontaneous differentiation during

expansion [43–45]. Translation of these findings to

hESCs may be complicated by differences in self-renewal

cues between mESCs and hESCs.

Advances in human pluripotent cell derivation
Derivation of new hESC lines has been hindered because

of ethical concerns regarding the destruction of human

embryos. However, new pluripotent cell lines are necess-

ary for understanding the basic biology of hESC growth

and differentiation and for translating scientific advances

to clinical therapies. Recent progress in hESC derivation

has led to the protocols that do not require embryo

destruction, including the fusion of existing hESC lines

with somatic cells, use of parthenogenesis to generate

blastocysts, somatic cell nuclear transfer, and reprogram-

ming of adult cells to induced pluripotent stem (iPS) cells.

In addition to reducing the ethical concerns surrounding

hESC research and development, these novel methods

advance the potential of developing patient-specific plur-

ipotent cell lines and generating lines suitable for clinical

applications.

Sources of embryos for hESC derivation

The initial hESC lines were derived via harvest of the

inner cell mass from blastocyst stage embryos and sub-

sequent subculture on MEF feeder cells [1]. Although
Current Opinion in Biotechnology 2008, 19:527–533
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most hESC derivation methods still utilize the entire

inner cell mass of the blastocyst, lines can also be created

from the morula or arrested embryos, albeit at a lower

efficiency than from blastocysts [46,47]. Embryos with a

low morphological grade do not efficiently yield hESC

lines if they are arrested before the blastocyst stage (<1%

efficiency), but at the blastocyst stage 8.5% of poor quality

embryos formed hESC lines in one study [48]. Chung

et al. derived multiple hESC lines using single cell

biopsies from morula-stage embryo without affecting

the ability of the biopsied embryos to develop to the

blastocyst stage in vitro [49�]. This technique, similar to

that used in preimplantation genetic diagnosis (PGD),

has not yet been used to generate an hESC line for an

embryo that implanted and formed a complete organism.

Given the labor-intensive nature of this process and the

risk that blastomere biopsy may pose to the developing

embryos, it is unlikely to become a widespread strategy

for generating patient-specific hESC lines, but it may be

beneficial for creating lines for embryos that undergo

PGD.

Inducing fusion of mESCs with adult thymocytes repro-

grammed the adult nucleus to an embryonic state [50].

Similar approaches successfully fused existing hESC

lines with human foreskin fibroblasts and hESC-derived

myeloid precursors to generate pluripotent cells that

express hESC-specific genes and exhibit embryonic

DNA methylation patterns [51,52]. The tetraploid nature

of these cells makes them unsuitable for clinical appli-

cations unless the hESC chromosomes can be removed

before or after fusion.

Revazova et al. demonstrated that blastocysts produced

by chemically induced parthenogenesis, asexual devel-

opment of an unfertilized oocyte, can be used to derive

hESC lines [53�]. Parthenogenesis of human oocytes has

also been used to generate human HLA homozygous

hESC from HLA heterozygous donors [54]. Although

parthenogenesis results in a high incidence of genetic
Table 1

Genes involved in reprogramming human somatic cells to the pluripo

Gene Function

OCT4 Homeodomain transcription factor

in the POU family. Required for

pluripotency

SOX2 HMG box-containing transcription

factor. Required for pluripotency

NANOG Homeobox transcription factor.

Required for pluripotency

KLF4 Kruppel-like transcription factor

LIN28 mRNA-binding protein. Expressed

in undifferentiated hESCs

c-MYC Proto-oncogene that encodes a

transcription factor
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abnormalities (i.e. deleterious recessive mutations in the

donor oocyte), this method does not require embryo

destruction and may be suitable for generating HLA-

matched lines which could be banked for patient-specific

regenerative therapies.

Somatic cell nuclear transfer (SCNT) has been used to

clone embryos and generate ESC lines from these

embryos in a number of species, including primates

[55]. A cloned human blastocyst-stage embryo was cre-

ated by the transfer of the nucleus from an undifferen-

tiated hESC into a human oocyte [56]. More recently,

SCNT of adult fibroblast nuclei into human oocytes was

used to generate multiple cloned blastocysts with 23%

efficiency. However, hESC lines have not yet been

derived from these cloned blastocysts [57]. Hwang

et al. reported, then retracted, the generation of hESC

lines from blastocysts formed by SCNT; interestingly,

one of these lines was later demonstrated to be the result

of parthenogenesis [58].

Induced pluripotent stem (iPS) cells

A promising new source of patient-specific pluripotent

cells is iPS cells (Table 1). These cells do not possess the

same ethical concerns of hESC lines since they do not

require the destruction of blastocysts. Yu et al. illustrated

that primary and transformed human dermal fibroblasts

can be reprogrammed to a pluripotent state by the

expression of OCT4, SOX2, NANOG, and LIN28

[59��]. Simultaneously, Takahashi et al. demonstrated

that four transcription factors, Oct4, Sox2, Klf4, and c-

Myc, also induced pluripotency in human dermal fibro-

blasts [60��]. MYC expression was not required to gen-

erate human iPS lines, but did improve efficiency [61].

Expression of hTERT and the SV40 large T antigen in

addition to OCT4, SOX2, KLF4, and c-MYC also

enhanced iPS cell generation from primary adult fibro-

blasts [62]. Human iPS cells express the hESC markers

SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, alkaline phos-

phatase, NANOG, OCT3/4, and SOX2 [59��,60��].
tent state

Necessary for iPS cell generation?

Yes

Yes

No. Expression can be induced in

reprogrammed cells by other factors

[60��]. Improves clone recovery [59��]

No

No. Improves clone recovery [59��]

No. Improves reprogramming efficiency [61]
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Furthermore, iPS cells exhibit high telomerase activity,

histone methylation patterns similar to those found in

hESCs, and pluripotency as determined by embryoid

body analysis, directed differentiation, and teratoma for-

mation [59��,60��]. Global gene expression analysis of

various iPS clones and hESC lines identified minor

differences between iPS cells and hESCs and between

different iPS clones, though these differences were not

greater than those found between distinct hESC lines

[59��,60��]. Further characterization of iPS lines, in-

cluding assessing growth and differentiation potential,

and the development of efficient induction factor delivery

methods that reduce the heterogeneity of transgene

expression will be required to establish the promise of

these cells in cell-based therapeutics.

Conclusions
In the past two years, the field of human pluripotent stem

cells has experienced a series of innovations in the deri-

vation and culture practices of these cells. Rapid progress

made in the field thus far is expected to accelerate as

increasing numbers of investigators and companies invest

in the development of pluripotent human stem cell

therapies. A variety of molecular factors involved in

pluripotent stem cell self-renewal have been ident-

ified — determining the synergistic effects of these mol-

ecules and the convergence of independent signaling

pathways affecting the growth and maintenance of hESCs

will enable a better mechanistic understanding of plur-

ipotent stem cell regulation. In addition, the recent

demonstrations of the ability to derive pluripotent cells

from different embryonic and adult cell sources will

provide unique opportunities to comparatively examine

the key factors and conditions that facilitate the expan-

sion of cells in a pluripotent state. Such advances are

expected to enable the efficient scale-up of human plur-

ipotent cells for clinical applications in the future.
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